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Coupled-mode equations for quadratically nonlinear deep gratings
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Using the method of multiple scales, we present a systematic derivation of the coupled-mode equations for
the propagation of light in quadratically nonlinear deep gratings. We show that the resulting coupled-mode
equations for deep gratings differ from those for shallow gratings in that the coefficients have different values,
and that additional nonlinear terms appear. Our equations reduce to well known results, in the appropriate
shallow grating limit.@S1063-651X~98!07512-6#

PACS number~s!: 42.65.Ky
e
n
n
g

n-
o

rg
se

h
io
n
o

al
in
ra
of
s

s

to

at
e-
g
n
e

all
al

e
l
d

f
on

ces

ng
ns
y

ple,
st.

ar
ons
n-

nce
ey

olu-

dic
no

for
ally
res,
in
sult

to
al-
the
ap-
ns-

re-
ons

be

rat-
e
de
ic
for-
lin-

ion
s as
I. INTRODUCTION

A particularly interesting feature of the properties of p
riodic Kerr media is the possibility of observing solito
propagation. Optical grating solitons are high-intensity no
linear pulses which can maintain their shape upon propa
tion in a grating@1#. The field structure in such pulses mai
tains its stability through a counterbalancing of the effect
the Kerr nonlinearity, which concentrates the pulse ene
and the effect of group velocity dispersion, which disper
it, induced by the periodic structure@1#. Such optical pulses
occur at frequencies around the photonic band gap whic
centered at the Bragg frequency associated with the per
icity of the structure@1#. Optical grating solitons have bee
studied theoretically for many years; however, it was n
until a few years ago that they were observed experiment
in an optical fiber Bragg grating of a few centimeters
length @2#. This length should be contrasted with tempo
solitons in uniform fibers, which typically require lengths
100’s of meters@3,4#. The difference in the length scale
arises from the grating dispersion, which is several order
magnitude larger than that of a uniform fiber.

In second harmonic generation~SHG!, the cascaded up
and down conversion, in the limit of a large wave vec
mismatch between the fundamental frequency~FF! and the
second harmonic frequency~SHF!, can lead to similar non-
linear phase shifts as those obtained in Kerr nonlinear m
rials @5#. Soliton propagation in quadratically nonlinear m
dia has been of particular interest in recent years leadin
many theoretical results on a variety of parametric solito
@6–11#. In addition to the theoretical work, evidence of th
propagation of spatial and temporal solitons in quadratic
nonlinear media has also been confirmed experiment
@12–16#. The spatial solitons reported in Ref.@12# were dem-
onstrated through type II SHG~where the two FF beams ar
orthogonally polarized! in a 1-cm-long potassium titany
phosphate~KTP! crystal. Temporal solitons were observe
in a 7-mm-longb-barium borate crystal in which the tilt o
the pulse’s amplitude front with respect to its phase fr
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compensates for the group velocity mismatch, and introdu
strong anomalous dispersion@16#.

As mentioned, Bragg gratings can also provide the stro
dispersion required for the propagation of temporal solito
@2#. Gratings also offer considerable flexibility in design; b
choosing the appropriate grating period one can, in princi
shift the grating dispersion to any spectral region of intere
The promise of the availability of quadratically nonline
gratings has motivated a number of theoretical publicati
on the propagation of temporal solitons in quadratically no
linear media in the presence of shallow gratings@9–11#. In
addition to these geometries, Conti, Trillo, and Assanto@17#
analytically considered nonlinear propagation in the prese
of quadratically nonlinear deep gratings. In their work th
used a Bloch function approach to derive two Schro¨dinger
equations which are known to possess solitary wave s
tions. Also, more recently, Scaloraet al. @18# considered
pulsed SHG in nonlinear, one-dimensional, deep, perio
structures. However, to our knowledge, there has been
analytical derivation of general coupled-mode equations
the propagation of electromagnetic waves in quadratic
nonlinear deep gratings. Here we consider such structu
and rigorously derive the evolution equations for the fields
such geometries. This leads to a generalization of the re
for shallow gratings in Refs.@9–11#.

Although our treatment, strictly speaking, applies only
periodic thin-film stacks, in guided-wave structures it is
most always possible to avoid the explicit dependence of
fields on the transverse coordinates. In making such an
proximation one assumes that the modal profiles in the tra
verse direction are not affected by the periodicity of the
fractive index or the nonlinearity; under these assumpti
the problem becomes one dimensional, and it can then
treated using the method developed here@4,19#. One-
dimensional problems can also be solved exactly by integ
ing the Maxwell equations@20#. However, one can gain mor
physical insight into the problem by using a coupled-mo
theory formalism. When this method is applied to period
structures, the relevant modes are often taken to be the
ward and backward propagating modes of the associated
ear, uniform medium~or, in other words, the eigenmodes!,
while the grating and the nonlinearity act as a perturbat
coupling these two modes. However, since the grating act
7951 © 1998 The American Physical Society
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a perturbation, this method can only be used for shal
gratings. When the grating is deep, the relevant modes
not simply be taken to be the forward and backward pro
gating modes, but must be the Bloch functions of the p
odic structure. An extension of standard coupled-mo
theory, in which the fields are expanded into Bloch fun
tions, has recently been developed for deep gratings wi
cubic nonlinearity@21#. This treatment involves deriving
set of coupled-mode equations which are similar, in the
propriate limit, to those that follow from conventiona
coupled-mode theory. The approach used in Ref.@21# relies
on expanding the field envelopes in the Bloch functions
the corresponding linear structure. Here we adapt this
proach so that it can be applied to treat quadratically non
ear deep gratings. Since we have two frequencies and
propagation directions, this leads to a set of four coup
equations@9–11#. In contrast, a deep grating with a cub
nonlinearity leads to two coupled-mode equations@21#.

The content of the paper is as follows. In Sec. II we der
the coupled envelope function equations for quadratic
nonlinear deep gratings which, using the transformat
given in Sec. III, can be written in a standard form. Then,
Sec. IV, we discuss some relevant properties of Bloch fu
tions. In Sec. V we consider the shallow grating limit of o
results, and show that the resulting equations are consis
with those derived in the literature. The nonlinear coe
cients for quadratically nonlinear deep gratings are evalua
and discussed in Sec. VI. Finally, conclusions are drawn
Sec. VII.

II. NONLINEAR COUPLED ENVELOPE FUNCTION
EQUATIONS

In this section we present a derivation of the coupled
velope function equations at the FF and SHF for light pro
gating in a quadratically nonlinear deep grating. The det
of the procedure we use were described in Secs. VI A
VI B of Ref. @21#, and thus are not repeated here.

Following earlier work@9–11#, we consider scalar type
SHG where a single FF beam is launched onto a quad
cally nonlinear medium, but now in the presence of a de
grating rather than a shallow one. The FF field is taken to
tuned to a frequency close to the centerv10 of the first
grating-induced band gap. This leads to a SHF which lie
the vicinity of the centerv20 of the second grating-induce
band gap. Note that because of the material’s dispers
v20Þ2v10. To expand the field envelopes into the Blo
functions of the linear structure, we must consider the po
tions of the band gaps in the Brillouin zone~BZ!. Figure 1
shows a typical photonic band structure in the first BZ.

In Fig. 1 the semicircle~on the right hand side! and the
circle ~in the center! indicate the FF and SHF band gap
respectively; these are also labeled with 1 and 2. Clearly,
first and the second grating-induced band gaps occur a
edge and center of the first BZ. Also shown in Fig. 1 is
typical range of frequencies for the FF and SHF fields. F
the FF field, this range is the shaded region just belowv10.
This leads to a SHF field with a range of frequencies wh
is twice as broad, and is indicated by the shaded region
below v20.
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An enlarged schematic of the two relevant band gap
shown in Fig. 2. The band gaps are bounded byvml,u . Here,
and throughout this paper, the subscriptm51 and 2, where 1
and 2 refer to the FF and SHF or the first and the sec
grating-induced band gaps, respectively. The subscriptsl and
u refer to the lower and upper band edges of each band
respectively. Sincevm0 is at the center of each of these ba
gaps we must have

vm05 1
2 ~vml1vmu!. ~1!

We consider an electric field as in Fig. 1~dashed regions!,
in which the FF and the SHF spectral components are w
separated. We designate these electric field componen
E1 andE2 , respectively, and similarly for the magnetic fie
H. Rather than working with these actual fields it is mo
convenient to introduce the local mode amplitudes. Re
that, in a uniform medium, two waves, at the FF and its SH
traveling towardz51` would have magnetic and electri
fields related byHm5nmEm /Z0 , whereZ0 is the vacuum

FIG. 1. Schematic of a photonic band structure of a deep g
ing, showing the angular frequencyv as a function of the reduced
wave numberk in the first BZ (2p/d,k<p/d). The shaded re-
gions are typical ranges of frequencies for the FF and the S
fields. The circle and semicircle indicate the SHF and FF band g
respectively.

FIG. 2. Schematic showing the FF and the SHF band gaps
k5p/d and k50 in the first BZ. The center frequenciesv10 and
v20 are halfway between the band gap edges atvml andvmu .
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impedance, while those traveling towardz52` would have
Hm52nmEm /Z0 . Thus, we can introduce@21,22#

Am65
1

2Fnm~z!

n0
G1/2FEm~z,t !6Z0

Hm~z,t !

nm~z! G , ~2!

whereAm1(z) is related to the component of the field prop
gating in the forward direction, andAm2(z) to that propa-
gating in the backward direction. The factor@nm(z)/n0#1/2,
wheren0 is a reference refractive index and wherenm(z) is
the spatially dependent refractive index at the relevant
quency, is introduced because the flux carried by pl
waves in a uniform medium is proportional tonmuEmu2

5uAnmEmu2. With the definitions in Eqs.~2! we thus expect
the flux towardz51` to be described by(„uAm1(z)u2…,
and that towardz52` to be described by((uAm2(z)u2).
As an aside, we note that for a structure with transve
dependence, the refractive indices are understood to be
fective indices, corresponding to a suitably weighted tra
verse average, determined by the modal profile.

We write Am5@Am1 ,Am2# as combinations of two
eigenvectors and two slowly varying envelopes@21#,

Am5@ f mlCml1 f muCmu#e
2 ivm0t1c.c., ~3!

wheref ml,u are the slowly varying envelopes, and the eige
vectorsCml,u5@cml,u

1 ,cml,u
2 # are @21#

cml,u
6 ~z!5

1

2FAnm~z!fml,u~z!7
ic

vml,u

1

Anm~z!

]fml,u~z!

]z G ,

~4!

wherefml,u are the Bloch functions at the relevant band g
edge, andc is the speed of light in vacuum.

Substituting Eqs.~2! into the Maxwell equations, we ca
derive the equations which are satisfied by theAm6 ,

inm•
]Am

]t
5Mm•Am1Bm , ~5!

where the refractive indexnm is given by

nm5Fnm~z! 0

0 nm~z!
G , ~6!

and the matrix differential operatorMm has the form

Mm5F 2 ic
]

]z

1

2
ic

]@ ln nm~z!#

]z

2
1

2
ic

]@ ln nm~z!#

]z
ic

]

]z

G . ~7!

Finally, in Eq. ~5!, Bm results from the nonlinear polariza
tion, and is defined below.

Starting from Eqs.~5!, we use the method of multiple
scales established in Ref.@21# to derive the coupled-mod
equations. In this formalism, one defines a set of multi
scales for the problem, which can then be used to keep t
of the variations in each of the amplitudes, the nonlinear
and the Bloch functions of the structure considered. By s
stituting Eqs.~3! into Eqs.~5!, and collecting all the terms
-
e

e
ef-
-

-

p

e
ck
,
-

that vary on the same scales, it can be shown that the
envelopes satisfy the coupled equations

i
] f mu

]t
51smf mu2 ivmul

] f ml

]z
1

1

N
~Cmu

†
•Bm!eivm0t,

~8!

i
] f ml

]t
52smf ml2 ivmlu

] f mu

]z
1

1

N
~Cml

†
•Bm!eivm0t,

where N5L/d is a normalization constant. Hered is the
period of the grating andL is the length over which the
Bloch functions are normalized. We note that the final
sults, presented in Sec. III, do not depend onL, as required.
Further,sm , as indicated in Fig. 2, is the detuning of th
frequencies at the band edges from the center of the b
gaps, and is given by

sm5vmu2vm05vm02vml , ~9!

where the last equality follows from Eq.~1!. The velocity
matrix elementvmlu52vmul is given by@21#

vmlu

c
5

2 ic

2N S 1

vmu
1

1

vml
D E

0

L

fml* ~z!
]fmu~z!

]z
dz. ~10!

In Eqs. ~8!, Bm , which was introduced in Eq.~5!, has two
identical components given by@21#

Bm6~z,t !52
i

2e0An0nm~z!

]PmNL

]t
. ~11!

In the last terms in Eqs.~8!, we only include the terms which
vary on the same scale as the rest of the terms in Eqs.~8!.
For type I SHG, where the FF field is linearly polarize
these terms are@23–25#

P1NL~z,t !52e0xeff
~2!~z!E1* ~z,t !E2~z,t !,

~12!
P2NL~z,t !5e0xeff

~2!~z!E1
2~z,t !,

where xeff
(2) represents the effective second-order nonlin

susceptibility@23,24#, which is a suitably weighted averag
over the elements of thex (2) tensor, and which is determine
by the polarization directions of the fields, and the po
group of the material. Though phase matching is not requ
here, it determines the magnitude ofxeff

(2) . Further,xeff
(2) can

be uniform or vary with the same period asnm(z). Express-
ing E(z,t) in terms ofAm6(z,t) from Eqs.~2!, we find

Em5F n0

nm~z!G
1/2

@Am1~z,t !1Am2~z,t !#. ~13!

With this expression forEm(z,t), Eqs.~11! become

B1652 i
xeff

~2!n0
1/2

n1~z!An2~z!

]

]t
$@A11* ~z,t !1A12* ~z,t !#

3@A21~z,t !1A22~z,t !#%,
~14!

B2652 i
xeff

~2!n0
1/2

2n1~z!An2~z!

]

]t
$@A11~z,t !1A12~z,t !#2%.
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Further, using Eqs.~2! in Eqs. ~13!, Em(z,t) can be ex-
pressed directly in terms of the slowly varying amplitud
f mu and f ml , and the Bloch functionsfml andful as

Em5n0
1/2~ f mlfml1 f mufmu!e

2 ivm0t1c.c. ~15!

Substituting Eqs.~15! into Eqs.~14! leads to the complete
expression of the nonlinearity which is given by

B165
2n0

1/2~v202v10!xeff
~2!~z!

An1~z!

3~ f 1u* f 2uf1u* f2u1 f 1u* f 2lf1u* f2l

1 f 1l* f 2uf1l* f2u1 f 1l* f 2lf1l* f2l !e
2 i ~v202v10!t,

~16!

B265
2n0

1/2v10xeff
~2!~z!

An2~z!

3~ f 1u
2 f1u

2 1 f 1l
2 f1l

2 1 f 1uf 1lf1uf1l !e
22iv10t.

With Eqs.~16! in Eqs.~8! we find

i
] f 1u

]t
51v1g

] f 1l

]z
1s1f 1u2~a1u1u2u* f 1u* f 2u1a1u1u2l* f 1u* f 2l

1a1u1l2u* f 1l* f 2u1a1u1l2l* f 1l* f 2l !e
2 idt,

~17!

i
] f 1l

]t
52v1g

] f 1u

]z
2s1f 1l2~a1l1u2u* f 1u* f 2u1a1l1u2l* f 1u* f 2l

1a1l1l2u* f 1l* f 2u1a1l1l2l* f 1l* f 2l !e
2 idt,

i
] f 2u

]t
51v2g

] f 2l

]z
1s2f 2u2~a1u1u2uf 1u

2 1a1l1l2uf 1l
2

12a1u1l2uf 1uf 1l !e
1 idt,

i
] f 2l

]t
52v2g

] f 2u

]z
2s2f 2l2~a1u1u2l f 1u

2 1a1l1l2l f 1l
2

12a1u1l2l f 1uf 1l !e
1 idt.

Here the group velocity

vmg5 ivmlu52 ivmul ~18!

is defined to be real, as can be ascertained from the defin
of vmlu in Eq. ~10!; the frequency mismatchd resulting from
the material dispersion of the constituents of the structur
given by

d5v2022v10, ~19!

and the nonlinear overlap integralsa are defined through

a1a1b2c5v10n0
1/2E

0

d

xeff
~2!~z!f1af1bf2c* dz. ~20!

From this definition, a1u1l2u5a1l1u2u and a1u1l2l
5a1l1u2l . In the nonlinear terms in Eqs.~17! we have taken
v2052v10 and vg5v1g5v2g . Even though these are onl
approximate equalities because of dispersion, in our met
on

is

od

these approximations are small corrections to the highes
der terms included in the multiple scales calculation, a
they thus lead to errors at orders which we have neglecte
the first place.

Before discussing Eqs.~17! we note that since we take th
FF and SHF to be tuned closely to the first and seco
grating-induced band gaps, from here on we use a field
pansion aboutk5p/d at the FF andk50 at the SHF respec
tively. At these positions in the BZ, the group velocity va
ishes, leading to Bloch functions which are real and wh
have a definite parity. Thus we expect some of thea ’s in
Eqs.~17! to vanish. A detailed discussion of these is given
Sec. V after casting Eqs.~17! into another form.

III. TRANSFORMATION TO COUPLED-MODE
EQUATIONS

Equations~17! attain a more familiar form if we set

E165
1

2
~ f 1l7 i f 1u!,

~21!

E265
1

2
~ f 2l7 i f 2u!eidt.

Applying this transformation to Eqs.~17!, we find

1 i
]E11

]z
1

i

v1g

]E11

]t
1k1E121G1E11* E211G2E11* E22

1G3E12* E211G3* E12* E2250,

2 i
]E12

]z
1

i

v1g

]E12

]t
1k1E111G3E11* E211G3* E11* E22

1G2* E12* E211G1* E12* E2250,
~22!

1 i
]E21

]z
1

i

v2g

]E21

]t
1dkE211k2E221G1* E11

2 1G2E12
2

12G3* E11E1250,

2 i
]E22

]z
1

i

v2g

]E22

]t
1dkE221k2E211G2* E11

2 1G1E12
2

12G3E11E1250,

whereEm6 refer to forward and backward propagating env
lopes,dk5d/v2g is the wave number mismatch, and the li
ear coupling coefficient is given by

km5
sm

vmg
. ~23!

The nonlinear coefficients

G j5
1

2vg
~b j1 ib j 13!, ~24!

whereb j andb j 13 , for j 5123, are linear combinations o
a1a1b2c :



-

ne
th
d

re
k
rs

-
te

h
r

rs
f t

s

f

th

con-
r-

s-
or

the
FF

the
rs
tin-

-
f a

he
in
nd

hes.

f

PRE 58 7955COUPLED-MODE EQUATIONS FOR QUADRATICALLY . . .
b15a1l1l2l12a1u1l2u2a1u1u2l ,

b25a1l1l2l22a1u1l2u2a1u1u2l ,
~25!

b35a1l1l2l1a1u1u2l ,

b452a1u1u2u22a1u1l2l1a1l1l2u ,

b55a1u1u2u22a1u1l2l2a1l1l2u ,

b65a1u1u2u1a1l1l2u .

All b j are real because alla ’s are real. We note that al
thoughG123 @Eqs. ~24!# are complex, Eqs.~22! satisfy the
condition

]

]z
@~ uE11u21uE21u2!2~ uE12u21uE22u2!#

5
]

]tF 1

v1g
~ uE11u21uE12u2!1

1

v2g
~ uE21u21uE22u2!G .

~26!

This implies that

1

v1g
~ uE11u21uE12u2!1

1

v2g
~ uE21u21uE22u2! ~27!

is conserved. Note that the quantity in Eq.~27! is also con-
served in a lossless, uniform dispersive medium where
ther a grating or a nonlinearity are present. To ensure
Eqs.~22! satisfy this condition, it was essential that we ma

the approximations discussed after Eq.~20!.

IV. PROPERTIES OF THE BLOCH FUNCTIONS

In this section we discuss some of the important featu
of the parameters in Eqs.~22!. We consider a periodic stac
consisting of layers of GaAs and AlAs. The GaAs laye
have a thicknessdGaAs, while the AlAs layers have a thick
nessdAlAs . For this thin-film stack we choose to demonstra
our results at a wavelengthlFF51.6mm corresponding to a
SH wavelengthlSHF50.8mm. At these wavelengths bot
GaAs and AlAs are known to be transparent at low tempe
tures. The refractive indices in each of the layers aren1GaAs
53.37, n1AlAs52.88, n2GaAs53.67, and n2AlAs53.04
@26,27#. For this system, Fig. 3 shows the frequencies@in
units ofc/d# of the upper and lower band edges, for the fi
and second grating-induced band gaps, as a function o
GaAs filling fraction dGaAs/d, where the periodd5dGaAs
1dAlAs .

In Fig. 3 the second grating-induced band gap vanishe

d̃5
n2AlAs

n2AlAs1n2GaAs
d, ~28!

indicated by the dashed vertical line. ForlFF51.6mm, Eq.
~28! gives d̃/d50.453, consistent with Fig. 3. This effect o
vanishing reflectivity is well known in the theory of thin-film
stacks, and corresponds to the situation in which both
i-
at
e

s

a-

t
he

at

e

GaAs and AlAs layers have a wave thickness ofl/2 @20#.
The disappearance of the band gap occurs because the
tributions to the reflectivity from the even numbered inte
faces exactly cancel those from the odd ones.

Figures 4 and 5 show the Bloch functions for two GaA
AlAs periodic structures at two different compositions. F
Fig. 4, dGaAs50.1 anddAlAs50.9 ~i.e., dGaAs,d̃), while for
Fig. 5 dGaAs50.9 anddAlAs50.1 ~i.e., dGaAs.d̃). As men-
tioned earlier, all Bloch functions are real, as required at
edge and the center of the BZ. The Bloch functions at the
have a period twice that of the lattice period sincek5p/d,
while those at the SHF have the same periodicity as
lattice sincek50. Note that in the center of the two laye
the Bloch functions always have either a node or an an
ode. At the first grating-induced band gap we find thatf1l
(f1u) always has a node~antinode! in the center of the low-
index AlAs ~high-index GaAs! layer. In contrast, at the sec
ond grating-induced band gap the position of the node o
particular Bloch function depends on whetherdGaAs,d̃ or
dGaAs.d̃. A summary of the nodes and antinodes of t
relevant Bloch functions is given in Table I. The results
this table show that the Bloch functions at the seco

FIG. 3. The frequencies~in units ofc/d) of the upper and lower
band edges as a function of the GaAs filling fractiondGaAs/d for the

FF and SHF band gaps. The dashed vertical line atdGaAs5d̃ shows
the period composition for which the band gap at the SHF vanis

FIG. 4. Bloch functions~as labeled! for a GaAs-AlAs periodic
structure withdGaAs50.1 anddAlAs50.9. Note that in the center o
dGaAs, fmu have nodes, whilefml have antinodes, form51 and 2.
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grating-induced band gap reverse roles on adjacent s
of d̃.

V. STANDARD COUPLED-MODE EQUATIONS:
SHALLOW GRATING LIMIT

We now turn to consider the shallow grating limit of o
results whendGaAs/d→0,1. The two compositions in Figs.
and 5 were chosen to show the features of this case. In
limit the Bloch functions can be written as simple trigon
metric functions. Choosing the origin to be in the center
the high-index GaAs layer, the Bloch functions are given

f1l51a1l cosS pz

d D , f1u52a1u sinS pz

d D ,

dGaAs,d̃:f2l51a2l cosS 2pz

d D , f2u52a2u sinS 2pz

d D ,

~29!

dGaAs.d̃:f2l52a2l sinS 2pz

d D , f2u52a2u cosS 2pz

d D ,

whereaml,u are the Bloch function amplitudes which follow
from normalization@21#, and where the signs of the Bloc
functions are chosen such thatvmg.0. Using Eqs.~29! in
Eqs.~25!, ~20!, and~24!, we find

FIG. 5. The Bloch functions~as labeled! for a GaAs-AlAs pe-
riodic structure withdGaAs50.9 anddAlAs50.1. Heref1l ,u have
nodes and antinodes as in Fig. 4, whilef2l ,u now have a node and
an antinode in the center ofdGaAs.

TABLE I. Comparison of the nodes and antinodes of the Blo
functions in the centers of the high-indexdGaAsand low-indexdAlAs

layers fordGaAs,AlAs,d̃ anddGaAs,AlAs.d̃.

dGaAs,d̃ dGaAs.d̃

Bloch function highn low n high n low n

f1l antinode node antinode node
f1u node antinode node antinode
f2l antinode antinode node node
f2u node node antinode antinode
es

is

f
y

dGaAs,d̃:

a1l1l2l5a1l1u2u52a1u1u2l ,

b154a1l1l2l ,

G15b1 /~2vg!5A2n0 cpx̄eff
~2!/~ n̄1

3n̄2vgd3/2! ; ~30!

dGaAs.d̃:

a1u1u2u5a1u1l2l52a1l1l2u ,

b4524a1u1u2u ,

G15 ib4 /~2vg!52 iA2n0 cpx̄eff
~2!/~ n̄1

3n̄2vgd3/2! ;

and all others vanish. Here,n̄1,2 are the average refractiv
indices at the FF and SHF, andx̄eff

(2) is the period average o
the effective quadratic nonlinearity@23–25#. Clearly, the
only nonlinear coefficient which survives in this limit isG1 .
Note thatuG1u is a continuous function of composition, bu
with a phase jump of2p/2 at dGaAs5d̃. Substituting Eqs.
~30! into Eqs.~22!, we find

1 i
]E11

]z
1

i

v1g

]E11

]t
1k1E121~ i !G1E11* E2150,

2 i
]E12

]z
1

i

v1g

]E12

]t
1k1E111~2 i !G1E12* E2250,

~31!

1 i
]E21

]z
1

i

v2g

]E21

]t
1dkE211k2E221~2 i !G1E11

2 50,

2 i
]E22

]z
1

i

v2g

]E22

]t
1dkE221k2E211~ i !G1E12

2 50,

where the factors in brackets should be ignored fordGaAs

,d̃. For dGaAs.d̃ the bracketed terms should be include
otherwise all parameters have the same values. Alternativ
applying transformationA2656 iE26 to Eqs. ~31! for
dGaAs.d̃ shows that the parameters fordGaAs,d̃ anddGaAs

.d̃ can be made to be identical, except for the sign ofk2 .
Therefore, the solutions on adjacent sides ofd̃ are not nec-
essarily straightforwardly related to each other.

Equations~31! are identical to the coupled-mode equ
tions obtained by He and Drummond@9#. Also, by using a
transformation slightly different from that used in Eqs.~21!,
it can be shown that Eqs.~31! have a form identical to tha
used recently in Ref.@10#. In Refs.@9–11# solutions to Eqs.
~31! are also given.

VI. COUPLED-MODE COEFFICIENTS FOR DEEP
GRATINGS

We now consider the full Eqs.~22!. The most obvious
difference between Eqs.~22! and those obtained in Refs
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@9,10# is the two additional nonlinear coefficientsG2 andG3 .
These coefficients introduce the nonlinear coupling betw
the forward and backward propagating other modes at the
and SHF. Another point to note is that the coefficients h
have different values compared to the equivalent terms
Refs.@9#. For example, in Eqs.~22!, the linear coupling co-
efficient km is given in terms of the exact eigenvalues a
eigenfunctions of the linear system@Eq. ~23!#. In contrast,
the coupling coefficient forNth order Bragg reflection for
shallow gratings isk5pDn/l, whereDn is the Nth order
Fourier amplitude of the refractive index@9#. Note that, as
was the case in the shallow limit,uG123u are continuous
functions ofdGaAs, but that the phases ofG123 exhibit jumps
at d̃; we discuss these in more detail in the example belo

Though the results derived are perfectly general, we n
continue our example of a GaAs-AlAs stack atlFF51.6mm.
The linear properties were already discussed in Sec. IV. F
ther, from symmetry considerations it is well known that f
GaAs and AlAs, the nonlinearx (2) tensor has six nonzer
elements, all of which have the same value@23,24#. In the
commonly used contracteddil notation these elements a
d145d255d36 @23,24#. Our example applies to the geomet
of van der Ziel and Illegems@28#. With a GaAs-Al0.3Ga0.7As
multilayer, cut in the@110# direction, and an incident FF
beam with polarization parallel to the@110# axis, a colinear
SHF field is generated, polarized in the@001# plane@28#. For
this geometry and field polarization only thed36 elements of
GaAs and AlAs are relevant. Using Miller’s rule, we take t
d36 ratio between AlAs and GaAs to be 0.33@23#. For
consistency with current literature@9–11#, below we use a
x (2) notation; the relation to thedil tensor is straightforward
@23#.

Figure 6 shows the magnitudes ofG123 @in units of
cxGaAs

(2) /(vgd3/2)#, using the left-hand vertical scale, and the
phases@in units of p#, using the right-hand scale, versu
dGaAs/d. The magnitude of theG ’s are labeled asG1 – 3, the
phases are labeled asG1p– 3p . As in the shallow grating case
the phases ofG1 – 3 change by2p/2 at dGaAs5d̃, sincef2l
and f2u reverse roles here. The coefficientG1 remains the

FIG. 6. AmplitudeGs @in units of cxeff
(2)/(vgd3/2) wherexeff

(2) is
that of GaAs# and phaseG jp ~in units of p) of the nonlinear coef-
ficients, for j 51 – 3, as a function of the filling fraction of GaAs fo
a GaAs-AlAs periodic stack. Heren1GaAs53.37, n1AlAs52.88,
n2GaAs53.67, n2AlAs53.04, andn051 andxAlAs

(2) /xGaAs
(2) 50.33.
n
F

e
in

.
w

r-

dominant coefficient. AlthoughG2 and G3 are certainly
smaller we find that G250.18G1 and G350.20G1 at
dGaAs/d50.18 anddGaAs/d50.34, respectively. Note that in
the shallow grating limit, whendGaAs/d→0 (1), Fig. 6
shows that, in the units used,G150.021 (G150.031) and
G2,3→0. These values are consistent with Eqs.~30!. As a
final comment, we note that in many experiments, the fie
are not polarized along crystal axes; in such cases one sh
usexeff

(2) , corresponding to a suitably weighted average o
the nonzero tensor elements@23,24#. Kobyakov, Peschel, and
Lederer gave a detailed discussion of, and expressions
xeff

(2) for both type I and type II SHG@25#.

VII. DISCUSSION AND CONCLUSIONS

We have considered periodic media with a second-or
nonlinearity, where the FF and SHF fields are close to
first and second Bragg resonances of the structure. Howe
in addition to this, in many geometries the SHF may
scattered out of the plane by the first-order resonance as w
Though this is completely avoided in thin-film geometri
@29–31#, it needs to be considered in guided-wave geo
etries, where it effectively leads to a loss at the SHF. Ho
ever, in waveguide geometries this loss can be minimized
designing the cover and the cladding regions as a multila
which reflects the scattered out of plane SH back toward
waveguide in phase with the original SHF guided mode@31#.

In our derivation we have taken the fields to be conc
trated around the lowest band gaps of a deep grating.
could, for example, also consider a situation with two gr
ings 1 and 2 with periodsd1'2d2 and for grating 1,dGaAs

5d̃. In this case the FF would see grating 1 and the S
would see only grating 2. The photonic band structures
the FF and SHF would then have no necessary relations,
greatly enhancing the design flexibility.

The main results of our derivation were demonstrated
a stack consisting of layers of GaAs and AlAs. In applyi
our results to such structures, we note that in practice th
gratings are only of the order of 50 periods. Although su
structures may seem short, these lengths are sufficien
demonstrate the basic effects of nonlinear pulse propaga
using femtosecond pulses because of the depth of the
ing.

In conclusion, we have presented a systematic appro
based on a Bloch function expansion and the method of m
tiple scales@21#, to analyze light propagation for type I in
teraction in quadratically nonlinear periodic media. In o
derivation we arrive at a set four coupled-mode equati
which look similar to the standard coupled-mode equatio
@9–11#, except that the values of some of the coefficients
different and that some additional nonlinear terms ari
These equations meet the conservation of energy cond
required for a lossless medium under two approximatio
which are well justified within our formalism. Our result
show that for the compositiondGaAs5d̃ @see Eq.~28!# of the
periodic structure, the second grating-induced band gap v
ishes, in agreement with well known results in the theory
thin-film stacks @20#. As a consequence, even though t
magnitudes of the nonlinear coefficientsG123 are continu-
ous, their phases jump by2p/2 at dGaAs5d̃. Thus, we
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would expect that the solutions to Eqs.~22!, for dGaAs,d̃

and dGaAs.d̃, not to be straightforwardly related. Finally
soliton solutions to Eqs.~31! have been found by many au
thors @9–11#; however, these are unlikely to be solutions
Eqs. ~22!. We will address solutions to these equations
future publications.
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