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Coupled-mode equations for quadratically nonlinear deep gratings
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Using the method of multiple scales, we present a systematic derivation of the coupled-mode equations for
the propagation of light in quadratically nonlinear deep gratings. We show that the resulting coupled-mode
equations for deep gratings differ from those for shallow gratings in that the coefficients have different values,
and that additional nonlinear terms appear. Our equations reduce to well known results, in the appropriate
shallow grating limit.[S1063-651X98)07512-6

PACS numbdis): 42.65.Ky

I. INTRODUCTION compensates for the group velocity mismatch, and introduces
strong anomalous dispersioh6].

A particularly interesting feature of the properties of pe- As mentioned, Bragg gratings can also provide the strong
riodic Kerr media is the possibility of observing soliton dispersion required for the propagation of temporal solitons
propagation. Optical grating solitons are high-intensity non{2]. Gratings also offer considerable flexibility in design; by
linear pulses which can maintain their shape upon propagahoosing the appropriate grating period one can, in principle,
tion in a grating[1]. The field structure in such pulses main- shift the grating dispersion to any spectral region of interest.
tains its stability through a counterbalancing of the effect ofThe promise of the availability of quadratically nonlinear
the Kerr nonlinearity, which concentrates the pulse energygratings has motivated a number of theoretical publications
and the effect of group velocity dispersion, which dispersesn the propagation of temporal solitons in quadratically non-
it, induced by the periodic structuf&]. Such optical pulses linear media in the presence of shallow gratifi§s11]. In
occur at frequencies around the photonic band gap which igddition to these geometries, Conti, Trillo, and Assgnfd
centered at the Bragg frequency associated with the periocnalytically considered nonlinear propagation in the presence
icity of the structurg/1]. Optical grating solitons have been of quadratically nonlinear deep gratings. In their work they
studied theoretically for many years; however, it was notused a Bloch function approach to derive two Sclimger
until a few years ago that they were observed experimentallgquations which are known to possess solitary wave solu-
in an optical fiber Bragg grating of a few centimeters intions. Also, more recently, Scaloret al. [18] considered
length [2]. This length should be contrasted with temporalpulsed SHG in nonlinear, one-dimensional, deep, periodic
solitons in uniform fibers, which typically require lengths of structures. However, to our knowledge, there has been no
100’s of meterq3,4]. The difference in the length scales analytical derivation of general coupled-mode equations for
arises from the grating dispersion, which is several orders ofhe propagation of electromagnetic waves in quadratically
magnitude larger than that of a uniform fiber. nonlinear deep gratings. Here we consider such structures,

In second harmonic generatid8HG), the cascaded up and rigorously derive the evolution equations for the fields in
and down conversion, in the limit of a large wave vectorsuch geometries. This leads to a generalization of the result
mismatch between the fundamental frequefiely) and the  for shallow gratings in Ref§9-11].
second harmonic frequen¢$HF), can lead to similar non- Although our treatment, strictly speaking, applies only to
linear phase shifts as those obtained in Kerr nonlinear mategeriodic thin-film stacks, in guided-wave structures it is al-
rials [5]. Soliton propagation in quadratically nonlinear me- most always possible to avoid the explicit dependence of the
dia has been of particular interest in recent years leading tfields on the transverse coordinates. In making such an ap-
many theoretical results on a variety of parametric solitongroximation one assumes that the modal profiles in the trans-
[6—11]. In addition to the theoretical work, evidence of the verse direction are not affected by the periodicity of the re-
propagation of spatial and temporal solitons in quadraticallffractive index or the nonlinearity; under these assumptions
nonlinear media has also been confirmed experimentallthe problem becomes one dimensional, and it can then be
[12-16. The spatial solitons reported in Rg12] were dem-  treated using the method developed hgrg19]. One-
onstrated through type || SHGvhere the two FF beams are dimensional problems can also be solved exactly by integrat-
orthogonally polarizedin a 1-cm-long potassium titanyl ing the Maxwell equationg20]. However, one can gain more
phosphatg KTP) crystal. Temporal solitons were observed physical insight into the problem by using a coupled-mode
in a 7-mm-longB-barium borate crystal in which the tilt of theory formalism. When this method is applied to periodic
the pulse’s amplitude front with respect to its phase frontstructures, the relevant modes are often taken to be the for-

ward and backward propagating modes of the associated lin-
ear, uniform mediunor, in other words, the eigenmodes
*Fax: 61 2 9351 7726. Electronic address: while the grating and the nonlinearity act as a perturbation
a.arraf@physics.usyd.edu.au coupling these two modes. However, since the grating acts as
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a perturbation, this method can only be used for shallow 4 r
gratings. When the grating is deep, the relevant modes can- c
not simply be taken to be the forward and backward propa- L

T T [ T TT T T

gating modes, but must be the Bloch functions of the peri-
odic structure. An extension of standard coupled-mode
theory, in which the fields are expanded into Bloch func-
tions, has recently been developed for deep gratings with a
cubic nonlinearity[21]. This treatment involves deriving a
set of coupled-mode equations which are similar, in the ap-
propriate limit, to those that follow from conventional
coupled-mode theory. The approach used in Rf] relies
on expanding the field envelopes in the Bloch functions of A
the corresponding linear structure. Here we adapt this ap- —0.5 0 0.5 1
proach so that it can be applied to treat quadratically nonlin- k (units of m/d)
S?(;p(ilZZE[)i Ognr a(:.[lli?gét.i O?}'Q C(;Jhivsvel eg%\lsetgwg Z:ﬁ%?r}gfrs Ca(l)nudplt;%o FIG. 1._ Schematic of a photonic band stru.cture of a deep grat-
; ’ : . . _Ing, showing the angular frequeney as a function of the reduced
equatlonsf[g_ll]' In contrast, a deep grating .Wlth a cubic wave numbek in the first BZ (— w/d<k</d). The shaded re-
nonlinearity leads to two CO.Upled_mOde equatipg]. . gions are typical ranges of frequencies for the FF and the SHF
The content of the paper 'S_ as fOHOW,S' In Sec. Il we d,er'veﬁelds. The circle and semicircle indicate the SHF and FF band gaps,
the coupled envelope function equations for quadratlcallyespecﬂvdy
nonlinear deep gratings which, using the transformation
given in Sec. lll, can be written in a standard form. Then, in

. X An enlarged schematic of the two relevant band gaps is
Sec. IV, we discuss some relevant properties of Bloch func- L
- . S shown in Fig. 2. The band gaps are boundedvly . Here,
tions. In Sec. V we consider the shallow grating limit of our '

results, and show that the resulting equations are consisteﬁﬂ g t; r?;%??gt ttl’?(las gg p:r:atgeHsFu%Srctﬁ f%r:tn gnzd Vtvhh:feion d
with those derived in the literature. The nonlinear coeffi-

cients for quadratically nonlinear deep gratings are evaluategr?et]'cgg;g?ﬁg?gv\?;ngn%ags’ ;?St?ae:é'vee(:y'elh; Sel;gidgﬁ% a
and discussed in Sec. VI. Finally, conclusions are drawn irf! X . d upp 9 9ap,
Sec. VII. respectively. Since,q is at the center of each of these band

gaps we must have

Ll[llll

w (arb. units)

\II\‘}

|
—

wmoz%(wml+wmu)- 1
II. NONLINEAR COUPLED ENVELOPE FUNCTION

EQUATIONS
Q We consider an electric field as in Fig(dashed regions

In this section we present a derivation of the coupled enin which the FF and the SHF spectral components are well
velope function equations at the FF and SHF for light propaseparated. We designate these electric field components as
gating in a quadratically nonlinear deep grating. The detail€; andE,, respectively, and similarly for the magnetic field
of the procedure we use were described in Secs. VIA anéi. Rather than working with these actual fields it is more
VIB of Ref. [21], and thus are not repeated here. convenient to introduce the local mode amplitudes. Recall

Following earlier work|9—11], we consider scalar type | that, in a uniform medium, two waves, at the FF and its SHF,
SHG where a single FF beam is launched onto a quadrattraveling towardz= + would have magnetic and electric
cally nonlinear medium, but now in the presence of a deeffields related byH,=n.E.,/Z,, Where Z, is the vacuum
grating rather than a shallow one. The FF field is taken to be
tuned to a frequency close to the centey, of the first

grating-induced band gap. This leads to a SHF which lies in \/ :

the vicinity of the centew,q of the second grating-induced 2 o,

band gap. Note that because of the material's dispersion, 62<{; O

wyo# 2w19. TO expand the field envelopes into the Bloch { -~ oy g

functions of the linear structure, we must consider the posi- 2 /—\ i

tions of the band gaps in the Brillouin zotBZ). Figure 1 g i

shows a typical photonic band structure in the first BZ. S ‘ \/
In Fig. 1 the semicircl€on the right hand sideand the = ® —>—t

circle (in the center indicate the FF and SHF band gaps, s ; 09 —> %> o

respectively; these are also labeled with 1 and 2. Clearly, the ; Oy —=

first and the second grating-induced band gaps occur at the /\

edge and center of the first BZ. Also shown in Fig. 1 is a 0 n}d

typical range of frequencies for the FF and SHF fields. For X
the FF field, this range is the shaded region just bedgy.

This leads to a SHF field with a range of frequencies which FIG. 2. Schematic showing the FF and the SHF band gaps, at
is twice as broad, and is indicated by the shaded region just=x/d andk=0 in the first BZ. The center frequencies, and
below wyg. wy are halfway between the band gap edgesatand w,,,.
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impedance, while those traveling toward — o would have that vary on the same scales, it can be shown that the field

Hmn=—nnEn/Z,. Thus, we can introduc?1,22| envelopes satisfy the coupled equations
1[ny(z) ]2 Hp(z,t) of o ofy 1 .
mtzz nl’:o En(z)x 2, nn;(z) , 2 | (;:u:"'o'mfmu_'vmul(g_;"'N(‘I’:nu'Bm)elwmot,
8
whereA,, . (2) is related to the component of the field propa- 0f ) w14 T ®
gating in the forward direction, and,,_(z) to that propa- '7: _Umfml_lvmluW‘F N(‘I’mer)e mot,

gating in the backward direction. The facfat,,(z)/ny]*?,

whereng is a reference refractive index and whexg(z) is  where N=L/d is a normalization constant. Heit is the

the spatially dependent refractive index at the relevant freperiod of the grating and. is the length over which the
quency, is introduced because the flux carried by plan@loch functions are normalized. We note that the final re-
waves in a uniform medium is proportional t,|Eql?  sults, presented in Sec. I, do not dependlgras required.
=|VnmEml%. With the definitions in Eqs(2) we thus expect Further,o,,, as indicated in Fig. 2, is the detuning of the
the flux towardz=+= to be described by (A, (2)|?), frequencies at the band edges from the center of the band
and that towardz= —« to be described b (|A,_(2)|?).  gaps, and is given by

As an aside, we note that for a structure with transverse

dependence, the refractive indices are understood to be ef- Om= Omy~ Omo= @m0~ @ml» 9
I/eecrtsl\éea'\?ggg:: gg:;errsrﬁr?gglgg :ﬁear;gét;b‘l));o\;\ille;ghted transwhere the last equality follows from Eql). The velocity

We write A,=[An: ,An_] as combinations of two Mmatrix element miy=—~vmy is given by[21]

eigenvectors and two slowly varying envelof2d], Ui _ __|C< 1 N i) fL(ﬁ* . f9¢mu(2)dz 0
An=[fmWm+ fr® e “mt+c.c., 3) ¢ 2Nlogy om/Jo ™ 9z '
wheref , , are the slowly varying envelopes, and the eigen-In Egs. (8), By, which was introduced in Eq5), has two
vectorsW  y=[ ¥miu: ¥miu) are[21] identical components given Hp1]
(D)= 3| D (27— Ol Bre(2)= - e (g
Vint.o(2)= o) Vm(2) St 2) OO = ) ) 260\ non(z) 9t
(4)

In the last terms in Eq$8), we only include the terms which
whereg,, , are the Bloch functions at the relevant band gapva’y on the same scale as the rest of the terms in @)s.
edge, anct is the speed of light in vacuum. For type | SHG, where the FF field is linearly polarized,
Substituting Egs(2) into the Maxwell equations, we can these terms arg23-25
derive the equations which are satisfied b ,
q Y e PiL(2.t) = 26X (DE] (2DExl2,),

o 0Ay s (12
mm'T:Mm'Am'{' B, (5) P2NL(Z-t):fngﬁ>(Z)E1(Z.t),

where X(eff) represents the effective second-order nonlinear
susceptibility[23,24], which is a suitably weighted average
Ny(2) 0 } over the elements of thel?) tensor, and which is determined

where the refractive indew,, is given by

Nm= 0 ne(2) (6) by the polarization directions of the fields, and the point
m group of the material. Though phase matching is not required
and the matrix differential operatd ., has the form here, it determines the magnitude @ff . Further,x3 can
be uniform or vary with the same period ag(z). Express-
o0 1 JdInny(z)] ing E(z,t) in terms ofA,,-(z,t) from Egs.(2), we find
rr 2'¢ Jz 112
M= . | No
1 d[Inny(z)] 9 En=|=——"%| [An+(z)+An-(Z)]. (13
PN L GO TN Nn(2)
2 Jz Jz

With this expression foE(z,t), Eqs.(11) become
Finally, in Eq. (5), B, results from the nonlinear polariza-

tion, and is defined below. _ ngném
Starting from Eqgs(5), we use the method of multiple Bli=—l—\/—E{[AL(Z,t)ﬁLAI_(Z,t)]
scales established in RgR1] to derive the coupled-mode N1(2) Vny(2)
equations. In this formalism, one defines a set of multiple X[Ags(z,t)+As_(z,1)]}
scales for the problem, which can then be used to keep track ' e
L : ; . . (14
of the variations in each of the amplitudes, the nonlinearity, Y 2ny2
eff ''0

and the Bloch functions of the structure considered. By sub- B, =i —"=— —{[A, (z,t)+A;_(z,1)]?).
stituting Egs.(3) into Egs.(5), and collecting all the terms - 2n,(z)yn,(z) ot
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Further, using Egs(2) in Egs. (13), E,(z,t) can be ex- these approximations are small corrections to the highest or-
pressed directly in terms of the slowly varying amplitudesder terms included in the multiple scales calculation, and

fmu andf,,, and the Bloch functiong,, and ¢, as they thus lead to errors at orders which we have neglected in
o ot the first place.
En=n5 (fmiémi* fmudmue™ “m +c.c. (15 Before discussing Eq$17) we note that since we take the

FF and SHF to be tuned closely to the first and second
grating-induced band gaps, from here on we use a field ex-
pansion abouk= 7/d at the FF andc=0 at the SHF respec-
tively. At these positions in the BZ, the group velocity van-

Substituting Eqs(15) into Egs. (14) leads to the complete
expression of the nonlinearity which is given by

2
- n01/2(w20_ wlo)Xfeff)(Z)

B,.= ishes, leading to Bloch functions which are real and which
- VNn4(2) have a definite parity. Thus we expect some of &g in
. . . . Egs.(17) to vanish. A detailed discussion of these is given in
X (fLufaudiudout fLuf21 1y b2 Sec. V after casting Eq$17) into another form.
+15f oyt ot T1 0 T o) @71 (@20™ @20,
v @ (16) ll. TRANSFORMATION TO COUPLED-MODE
B, _ " Mo "wioXeir (2) EQUATIONS
22 E ions(17) i familiar f if
L quation attain a more familiar form if we set
X (FLugtu+ fL % + frufu drudu)e 2o,
1 .
With Egs.(16) in Egs.(8) we find &1 =5 (fyFif),
Ofqy afq ; . £ 5 x on g 1 (21)
| ot UlgE‘*'a'l 1w~ (@Qu1uauf Tufout @Tuu fiufa 52t:§(leiif2u)eiﬁt-
+afyauf i out @y fhfa)e %, . . . :
@luizul 2wt sz fifa) an Applying this transformation to Eq$17), we find
WA 1 € i og
|7:_vlgﬁ_Ulfll_(aillu2ufiuf2u+aIIluZIfiufm +i H+—i+K151—+F15f+52++F25f+52—

Jz Ulg ot

+ afinauffifaut @fja fhifa0e ™, +T38 &+ 588, =0,

9ty AF! 2 2 9 i 9E
i——=+4vyq—+ - + L 0c1- ! 1-
— Vg o2t oy (aruru2uf 1+ annaufy —i— +U—mT+K151++F35’1‘+52++F’3*81‘+52,
+2ay120fufr) e, +TEE & +T3E &, =0,
22
. 5f2l ﬁfZU 2 2 . ( )
== v ~oafa— (ernuafiut enuaty & 1 0,

+1

9z vy ot

+ OKEy s+ KpEy +THER +T,E2_
+2an2frufo)e™
+ 21—“’3‘ 514,((/‘1, = 0,

Here the group velocity

. . C0E5_ [
Umg= Umiu™ ~ 1Wnul (18 =1

0z UZQ ot
+ 2F351+(€1, = 0,

+OKE_ + KpEp +TEE2, 41,82

is defined to be real, as can be ascertained from the definition
of vy IN EQ. (10); the frequency mismatch resulting from

the material dispersion of the constituents of the structure igshere&,,.. refer to forward and backward propagating enve-

given by lopes, 5k= 8/v 4 is the wave number mismatch, and the lin-
ear coupling coefficient is given by
5: W™ 2(1)10, (19)
g,
and the nonlinear overlap integralsare defined through szv—m. (23
mg
d . . .
X1alb2c ™ wlOnélzfo X(e%?(z)(ﬁla(ﬁlb(ﬁ;cdz' (20) The nonlinear coefficients
1 .
From this definition, aqyz=auiee and apua szz—%(ﬁj+lﬁj+3), (24)

= aq)142 - In the nonlinear terms in Eqél7) we have taken

wg=2w1g andvg=v13=v,y. Even though these are only whereg; andg;. 3, for j=1-3, are linear combinations of
approximate equalities because of dispersion, in our methoé; 1, :
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B1= a2 2141120~ X101021 - — LrrrrTT E CrTTTTITTT

g - SHF .

|- | -

B2=anni21— 2141120~ Q1utuz! » o o5 ! ]

(25) S i : ]

B3= ayiat @ru1uzl - ! y

j‘? B : dGaAs> d 7

Ba= — @1y1u2u— 2141121+ A1j1120 s o 15 . =

2 [ oag,<d ! ]

Bs= a1y1u2u~ 2@ 141121~ X1i1i20 s 8 = FF .

5o —— T

Be= @1utuzut 11120 - 3 L | RN ’ a

All g; are real because all's are real. We note that al- 6 02 04 06 08 1
thoughI';_; [Egs. (24)] are complex, Eqs(22) satisfy the dGaAs/d

condition
FIG. 3. The frequenciegn units ofc/d) of the upper and lower
2 2 2 2 band edges as a function of the GaAs filling fractitas/d for the
E[(|gl+| e[ = (8- 1"+ 8- 9] FF and SHF band gaps. The dashed vertical lingsgs=d shows
a1 1 the period composition for which the band gap at the SHF vanishes.
=E;(|51+|2+|517|2)+U—(|52+|2+|527|2) : ,
9 2g GaAs and AlAs layers have a wave thicknessné2 [20].
(26)  The disappearance of the band gap occurs because the con-
tributions to the reflectivity from the even numbered inter-
This implies that faces exactly cancel those from the odd ones.
Figures 4 and 5 show the Bloch functions for two GaAs-
i(|51+|2+|517|2)+ i(|52+|2+|527|2) 27) AlAs periodic structures at two different compositions. For
Ulg ng

Fig. 4, dgaas=0.1 anddss=0.9 (i.e., dgaas< d), while for

is conserved. Note that the quantity in E87) is also con-  Fi9- 5 dgaas=0.9 anddaas=0.1(i.e., dgans>d). As men-
served in a lossless, uniform dispersive medium where nefioned earlier, all Bloch functions are real, as required at the
ther a grating or a nonlinearity are present. To ensure thgtdge and the center of the BZ. The Bloch functions at the FF

Egs.(22) satisfy this condition, it was essential that we madenave a period twice that of the lattice period sitkce w/d,
while those at the SHF have the same periodicity as the

lattice sincek=0. Note that in the center of the two layers
the Bloch functions always have either a node or an antin-
ode. At the first grating-induced band gap we find that
(¢41,) always has a nod@ntinode in the center of the low-
index AlAs (high-index GaAs layer. In contrast, at the sec-
In this section we discuss some of the important featuresnd grating-induced band gap the position of the node of a
of the parameters in Eqé22). We consider a periodic stack particular Bloch function depends on whethtg,ac<d or
consisting of layers of G_aAs and AlAs. The GaAs IgyersdGaA?a_ A summary of the nodes and antinodes of the
have a thicknesdgaas, while the AlAs layers have a thick- gjeyant Bloch functions is given in Table I. The results in

nessdaas - For this thin-film stack we choose to demonstratehis table show that the Bloch functions at the second
our results at a wavelength.r=1.6 um corresponding to a

SH wavelength\ .= 0.8 um. At these wavelengths both
GaAs and AlAs are known to be transparent at low tempera-
tures. The refractive indices in each of the layersrargas
=3.37, Niaps=2.88, Nogaae—3.67, and nopps=3.04
[26,27). For this system, Fig. 3 shows the frequendies
units ofc/d] of the upper and lower band edges, for the first
and second grating-induced band gaps, as a function of the
GaAs filling fraction dgapas/d, Where the periodd=dgaas
+daias -

In Fig. 3 the second grating-induced band gap vanishes at

the approximations discussed after E20).

IV. PROPERTIES OF THE BLOCH FUNCTIONS

\[!\I‘I\III\\II\I

< GaAs AlAs

0.5

AR AR
3 ~
~
~
N
N
N
\
-
H

-

Bloch functions
o

\ ,
ENETETEN SRR B

|
o
(o)}
TT T T[T T

¢2u | ¢ lu

|‘||4|||\‘|\\||r|

~ n
d=$d, (28) -1
N2alas T N2Ganas 0 02 04 06 0.8

—
i
i
T
1
Y
\
—

—_

indicated by the dashed vertical line. Poge=1.6um, Eq. position/d

(28 gi\./esa/d=0..453-, consistent with Fig. 3. This effect of  FIG. 4. Bloch functiongas labeleifor a GaAs-AlAs periodic
vanishing reflectivity is well known in the theory of thin-film structure withdg,a=0.1 anddas=0.9. Note that in the center of
stacks, and corresponds to the situation in which both thég,a., ¢m, have nodes, while,, have antinodes, fan=1 and 2.
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1 T T ‘ LI ‘ T T I T 17T ‘ T I_ <~.
b, GaAs AlAs —] Ugans=0:
2 - | SRR a1 = @ —
g 05 ) ! \L 17 111121 1l1u2u 1ulu2l »
;3 S I 7
L | 1] _
E o F ! >§< Bi=4ay121,
[~ I 17 —
5 i ! '] T'1=B1/(209)=\2no cx @/ (nin,v,d®?);  (30)
2 - Sl S
@ =05 | ﬁ 5 ~
- $o B dgaas™d:
i | | | | P f B
-1 0 02 04 06 08 1 ®1ytu2u™ F1u1i21 = — Q111120
osition/d
P / Ba=—4a1y1u2u,
FIG. 5. The Bloch functiongas labeletlfor a GaAs-AlAs pe- .
riodic structure withdgaas=0.9 anddaas=0.1. Heredy , have I1=iB4/(2vg)= —i*/2n00wﬂ§)/(ﬁfn2vgd3’z);
nodes and antinodes as in Fig. 4, whitg , now have a node and
an antinode in the center digaas. and all others vanish. Here, , are the average refractive

dndices at the FF and SHF, and? is the period average of

grating-induced band gap reverse roles on adjacent sid i ) ) )
the effective quadratic nonlinearit}23—25. Clearly, the

of d. only nonlinear coefficient which survives in this limit I, .
Note that|T';| is a continuous function of composition, but
V. STANDARD COUPLED-MODE EQUATIONS: ‘(’gg‘ .atphé‘se (Jggm Of‘f.”élz atdgaas=d. Substituting Egs.
SHALLOW GRATING LIMIT INto £gs.{22), we tin
We now turn to consider the shallow grating limit of our L 0E T 98, .
results whertgaas/d—0,1. The two compositions in Figs. 4 ti— T vig Ot +x1E -+ (DE &4 =0,
and 5 were chosen to show the features of this case. In this
limit the Bloch functions can be written as simple trigono- 9E; i 98,
metric functions. Choosing the origin to be in the center of  —i 5 +— it +r1E (=16 &, =0,
the high-index GaAs layer, the Bloch functions are given by Z Uy (31
(A A 0 i 9E4 . 2
é1=+ay cos(F), 1= 2y sin — H— +aT+5k52++;<252,+(—|)1“151+=0,
~ 27z (2mz S . . 2
dgaas<di gz = +ay 005( T) , o= —ayy sm(T) , et E a OkEy—+ Kkp&s 4 +(1)1E1_=0,

29
29 where the factors in brackets should be ignored dggas
~ _[2mz 27z <d. For dgaas>d the bracketed terms should be included:;
dans>d: d2=~2z S'”(T) b= ~ayy COE( T) ' otherwise all parameters have the same values. Alternatively,
applying transformationA,.==*i&,. to Egs. (31) for
wherea, , are the Bloch function amplitudes which follow dGaAS><~j shows that the parameters fd@gaAS<<~j and dgaas
funciions are chosen such theg 0. Using Eqs(29) in 0 021 be made to be identica, except or the signcof
Egs.(25), (20), and(24), we find 9 Therefore, tr_]e solutions on adjacent sidesiadre not nec-
' ' ' ' essarily straightforwardly related to each other.
Equations(31) are identical to the coupled-mode equa-
tions obtained by He and Drummonél]. Also, by using a
transformation slightly different from that used in E¢21),

TABLE I. Comparison of the nodes and antinodes of the Bloch
functions in the centers of the high-inddg,asand low-indexdajas

layers fordgaasaias<d and dgans ains> d- it can be shown that Eq$31) have a form identical to that

d 3 d 3 used recently in Ref10]. In Refs.[9—11] solutions to Egs.
Gaas~ Gaas~ (31) are also given.

Bloch function highn low n high n low n

bu antinode  node  antinode  node VI. COUPLED-MODE COEFFICIENTS FOR DEEP

b1y node antinode node antinode GRATINGS

b antinode  antinode node node

bou node node antinode  antinode We now consider the full Eq922). The most obvious

difference between Eq€$22) and those obtained in Refs.
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0.04 T dominant coefficient. AlthougH', and I'; are certainly
C 05 smaller we find thatl',=0.18"; and I'3;=0.20"; at
0.03 | r R dgaas/d=0.18 angijGaAs/(_j=0.34, respectively. Note_that in
N ! 1 the shallow grating limit, whemdgaas/d—0 (1), Fig. 6
0.02 = i o shows that, in the units used;=0.021(";=0.031) and
T c Tiv. 2.3 do = I', 5—0. These values are consistent with E¢R0). As a
001 & i 3 final comment, we note that in many experiments, the fields
R _Fs_\ . @ are not polarized along crystal axes; in such cases one should
BT e, usex'#, corresponding to a suitably weighted average over
- i Tip. 20 30 i —05 the nonzero tensor elemens,24. Kobyakov, Peschel, and
E i, ’ Lederer gave a detailed discussion of, and expressions for,
00 S 04 06 08 1 x'# for both type | and type Il SHG25].
dGaAs/d
VII. DISCUSSION AND CONCLUSIONS
FIG. 6. AmplitudeT's [in units of cx 3/ (v4d*?) wherex3 is . o o
that of GaAg and phasd’j, (in units of r) of the nonlinear coef- We have considered periodic media with a second-order

ficients, forj=1-3, as a function of the filling fraction of GaAs for nonlinearity, where the FF and SHF fields are close to the
a GaAs-AlAs periodic stack. Her@;g.a=3.37, nians=2.88,  first and second Bragg resonances of the structure. However,
Nogans 3.67, Noaas=3.04, andny=1 andx$\/ x2,=0.33. in addition to this, in many geometries the SHF may be

scattered out of the plane by the first-order resonance as well.

Though this is completely avoided in thin-film geometries
[9,10] is the two additional nonlinear coefficierlts andl ;. [29-31], it needs to be considered in guided-wave geom-
These coefficients introduce the nonlinear coupling betweeatries, where it effectively leads to a loss at the SHF. How-
the forward and backward propagating other modes at the F&ver, in waveguide geometries this loss can be minimized by
and SHF. Another point to note is that the coefficients hergjesigning the cover and the cladding regions as a multilayer
have different values compared to the equivalent terms ifyhich reflects the scattered out of plane SH back toward the
Refs.[9]. For example, in Eq922), the linear coupling co-  waveguide in phase with the original SHF guided mf@iH.
efficient x,, is given in terms of the exact eigenvalues and |n our derivation we have taken the fields to be concen-
eigenfunctions of the linear systef&q. (23)]. In contrast, trated around the lowest band gaps of a deep grating. One
the coupling coefficient foNth order Bragg reflection for could, for example, also consider a situation with two grat-
shallow gratings isc=wAn/\, whereAn is theNth order  ings 1 and 2 with periodd;~2d, and for grating 1dgaas
Fourier amplituple of the refract-ivg indd®]. Note that, as =7, In this case the FF would see grating 1 and the SHF
was the case in the shallow limit]’; 5| are continuous \yoyiq see only grating 2. The photonic band structures for
functions ofdgans, but that the phases f, - 3 exhibit jumps  {he FF and SHF would then have no necessary relations, thus
atd; we discuss these in more detail in the example belowgreatly enhancing the design flexibility.

Though the results derived are perfectly general, we now The main results of our derivation were demonstrated for
continue our example of a GaAs-AlAs stack\agt=1.6 um.  a stack consisting of layers of GaAs and AlAs. In applying
The linear properties were already discussed in Sec. IV. Fumur results to such structures, we note that in practice these
ther, from symmetry considerations it is well known that for gratings are only of the order of 50 periods. Although such
GaAs and AlAs, the nonlineay(® tensor has six nonzero structures may seem short, these lengths are sufficient to
elements, all of which have the same va[28,24. In the  demonstrate the basic effects of nonlinear pulse propagation
commonly used contracted,, notation these elements are using femtosecond pulses because of the depth of the grat-
dq4=dy5=d3g [23,24]. Our example applies to the geometry ing.
of van der Ziel and lllegemi28]. With a GaAs-A} :Ga, /As In conclusion, we have presented a systematic approach
multilayer, cut in the[110] direction, and an incident FF based on a Bloch function expansion and the method of mul-
beam with polarization parallel to tH410] axis, a colinear tiple scale§21], to analyze light propagation for type | in-
SHF field is generated, polarized in tf@01] plane[28]. For  teraction in quadratically nonlinear periodic media. In our
this geometry and field polarization only thgs elements of  derivation we arrive at a set four coupled-mode equations
GaAs and AlAs are relevant. Using Miller’s rule, we take thewhich look similar to the standard coupled-mode equations
dss ratio between AlAs and GaAs to be 0.323]. For [9-11], except that the values of some of the coefficients are
consistency with current literatuf®—11], below we use a different and that some additional nonlinear terms arise.
x'?) notation; the relation to thd,, tensor is straightforward These equations meet the conservation of energy condition
[23]. required for a lossless medium under two approximations

Figure 6 shows the magnitudes 6f,_5 [in units of  which are well justified within our formalism. Our results
cx&ad (v40*?)], using the left-hand vertical scale, and their show that for the compositiotiga=d [see Eq(28)] of the
phases[in units of 7], using the right-hand scale, versus periodic structure, the second grating-induced band gap van-
dgaas/d. The magnitude of thé&’s are labeled a¥';_3, the  ishes, in agreement with well known results in the theory of
phases are labeled Hg,,_3,. As in the shallow grating case, thin-film stacks[20]. As a consequence, even though the

the phases of ;3 change by— 7/2 atdgaa=d, since,, magnitudes of the nonlinear coefficiedts _; are continu-
and ¢,, reverse roles here. The coefficieif remains the ous, their phases jump by /2 at dgsac=d. Thus, we
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would expect that the solutions to Eq®2), for dgaas<d ACKNOWLEDGMENTS
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